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Analysis of thermal effects in a spherical adsorbent pellet
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Abstract

A new model of nonisothermal adsorption is presented. The model is applicable to systems with nonlinear adsorp-
tion isotherm. Both intraparticle and film mass-transfer resistances are accounted in the model with the intraparticle
mass-transfer rate being controlled by pore diffusion. An analytical solution of the model equations has been developed
and a criterium for the existence of a maximum in the temperature uptake curves has been presented. A simple algo-
rithm for the calculation of the maximum particle temperature has been illustrated. A detailed sensitivity analysis has
shown the influence of various parameters on the temperature uptake curves. The model has been applied to the system
water vapour–alumina and the predicted temperature uptake curves were compared with experimental results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Adsorption processes are widely applied in such pro-
cesses as water treatment, atmospheric pollution preven-
tion and the separation and purification of products
[1,2]. Pressure Swing Adsorption is applied in large scale
industrial processes such as the production of bioethanol
which is an important renewable fuel additive [3]. The
modeling, simulation and optimization of large scale
processes have important implications on their econom-
ics and industrial viability. The modeling requires infor-
mation about the equilibrium, kinetics and dynamics of
the process. Adsorption processes are in general exother-
mic. If the concentrations of the adsorbed components
are high and the heat of adsorption significant, the heat
effects cannot be neglected. In the case of trace systems,
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the processes may in general be considered isothermal. It
is obvious that in many cases it is difficult to predict the
significance of the heat effects. When the adsorption heat
effect cannot be neglected, the models of the adsorption
processes become more complicated. It is therefore very
important to establish simple and accurate criteria which
allow one to check the validity of the assumption of the
process being isothermal.

During adsorption, heat is generated which partly is
transferred to the surrounding fluid and partly is accu-
mulated in the particle leading to a temperature increase.
The calculation of the temperature uptake curves is
based on mathematical models of different complexity
depending on the simplifying assumptions being made.
The most widely applied simplifying assumptions are

1. The isotherm is linear. This assumption is particu-
larly useful in the derivation of analytical solutions
of the model equations [4–6]. In most practical sys-
tems however the isotherms are nonlinear making
ed.
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Nomenclature

Bi mass-Biot number
cg heat capacity of the fluid
cp heat capacity of the pellet
Cb component concentration in the bulk
Dp effective pore diffusion coefficient
E0 constant in Eqs. (49) and (50)
h heat transfer coefficient
DH heat of adsorption
kg mass-transfer coefficient
K0 constant in Eq. (49)
p partial pressure
ps saturation pressure
Pr Prandtl number
�qm average component concentration in the

pellet, [kg/kg]
qmb component concentration in the pellet at

equilibrium with Cb, [kg/kg]
R gas constant (=8.314 J/mol K)
RH relative humidity
Rp radius of the pellet
Sc Schmidt number
t time

T pellet temperature
T0 initial temperature of the pellet
Tb fluid temperature
DTad adiabatic rise of temperature
u fluid velocity
Y dimensionless average solid concentration

Greek symbols

b constant (Eq. (10))
c constant (Eq. (11))
d constant defined by Eq. (14)
f constant defined by Eq. (29)
g constant defined by Eq. (35)
k adsorption equilibrium constant
qg fluid density
qp pellet density
m exponent in Freundlich equation
r constant defined by Eq. (30)
h dimensionless temperature
hb constant defined by Eq. (31)
s dimensionless time
w constant defined by Eq. (26)
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these models inaccurate. The linearization of the iso-
therm leads to the underestimation of the intraparti-
cle mass-transfer rate and consequently the predicted
maximum particle temperature is smaller than the
observed.

2. The external mass-transfer resistances are negligible.
This assumption is rather controversial because at
the initial stages of the process when the heat effects
are most significant, the external mass-transfer resis-
tances are usually rate controlling. As shown by Hills
[7], this assumption leads to greater errors than the
assumption that the isotherm is temperature
independent.

3. The adsorption isotherm parameters are independent
of temperature. As shown by Hills [7], in the case of
small temperature rises (less than 10 K), the assump-
tion that the isotherm is temperature independent
does not lead to significant errors.

4. The diffusion coefficient, heat capacity and heat of
sorption are independent of temperature.

5. The particle temperature gradients are negligible and
the heat transfer resistance is contributed by the film
surrounding the particle. As shown by Brunovska
et al. [8] the lumped thermal model of nonisothermal
adsorption is a very good approximation to the com-
plete model for many practical systems.

6. The intraparticle mass-transfer rate can be approxi-
mated using driving force models. Bowen and
Rimmer [9] applied Vermeulen�s Quadratic Driving
Force model [10] in the analysis of experimental
results for the system water vapour–alumina. Bhas-
kar and Do [11] developed approximate models for
nonisothermal adsorption with a linear isotherm
using the parabolic (LDF model) and the nth order
approximation of the intraparticle concentration
profile.

Ruthven et al. [6] have assumed that the external
mass-transfer resistances are negligible and the equilib-
rium relationships are linear i.e. (oqm/oT)p = const. The
analytical solution for the temperature history is then

ðT � T 0Þ
oqm
oT

� �
p

¼ qmb �
X1
n¼1

3½ðpn cot pn � 1Þ=p2n� � expð�p2nsÞ
1
b0 þ 3

2
� ½pn cot pnðpn cot pn � 1Þ=p2n þ 1�

ð1Þ

where pn are the roots of

3b0ðpn cot pn � 1Þ � p2n þ a0 ¼ 0 ð2Þ

with the parameters a 0 and b 0 given by

a0 ¼ hkRp

Dpcp
ð3Þ

b0 ¼ DH
cp

� oqm
oT

� �
p

ð4Þ
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A literature review shows that simple and accurate
models for the case of nonisothermal adsorption with
a nonlinear isotherm and mass-transfer resistances both
in the film and in the particle are currently not available.
In this work a new approximate model is developed for
this particular case. The resulting equations are analyti-
cally integrated to obtain the time dependence of the
particle temperature. A simple criterium for the exis-
tence of a maximum in the temperature uptake curve
is developed and a simple algorithm for the calculation
of the maximum particle temperature is illustrated. A
detailed sensitivity analysis performed shows the influ-
ence of various parameters on the temperature uptake
curves. The model is further applied to the system water
vapour–alumina and the predicted temperature uptake
curves were compared with the experimental results by
Bowen and Rimmer [9].
Fig. 1. Dependency of smax on Freundlich exponent m and the
mass-Biot number Bi.
2. Kinetic equation for Freundlich systems with macropore

diffusion control

Currently a number of kinetic equations for nonlin-
ear isotherm systems with macropore diffusion control
is available [12–14]. In this work the kinetic equation
developed by Kupiec [12] has been used to describe the
mass-transfer rate. This kinetic equation is applicable
to systems with both intraparticle and film mass-transfer
resistances. Furthermore its simple form and accuracy
allow the derivation of an analytically integrable mathe-
matical model of nonisothermal adsorption process. In
dimensionless form this kinetic equation is

dY
ds

¼ 3

bY þ c
Bi

ð5Þ

where Y is the dimensionless volume averaged concen-
tration in the particle:

Y ¼ �qm
qmb

ð6Þ

The dimensionless time is defined as

s ¼ Dpt

kR2
p

ð7Þ

while the mass-Biot number is given by

Bi ¼ kgRp

Dp

ð8Þ

The adsorption equilibrium parameter k is

k ¼
qmbqp

Cb

ð9Þ

The parameters b and c are linear functions of the
Freundlich exponent:
b ¼ 1=3þ 0:351m ð10Þ
c ¼ 1þ 0:143m ð11Þ

The kinetic equation (5) is limited to short times
ðY < 0:5Þ. For the current analysis however this limita-
tion is not important because the heat effects are most
significant in the initial stages of the process.

Upon integration of Eq. (5) with the condition s = 0,
Y ¼ 0 one obtains

s ¼ 1

6
bY

2 þ 2cY
Bi

� �
ð12Þ

and therefore for Y > 0

Y ¼ c
bBi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ds

p
� 1

� �
ð13Þ

where

d ¼ 6bBi2

c2
ð14Þ

These formulas are applicable for s < smax where

smax ¼
1

6

b
4
þ c
Bi

� �
ð15Þ

resulting from Eq. (12) with Y ¼ 0:5. In Fig. 1 the
dependence of smax on the Freundlich exponent for
various values of the mass-Biot number is shown.

Eq. (5) is very accurate for all values of the Freund-
lich exponent and for all values of the mass-Biot num-
ber. An analysis of some particular cases is given below:

Rectangular isotherm. For m = 0 then b = 1/3 and
c = 1. Upon substitution to Eq. (12) one obtains:

s ¼ 1

6

1

3
Y

2 þ 2Y
Bi

� �
ð16Þ

In the case of a rectangular isotherm the exact analytical
solution is [15]:
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s ¼ 1

6
1þ 2ð1� Y Þ � 3ð1� Y Þ2=3 þ 2Y

Bi

� �
ð17Þ

For small values of the fractional uptake, the above Eq.
(17) can be simplified leading to Eq. (16). For extreme
values of the mass-Biot number, Eq. (16) can be simpli-
fied to give well known kinetic equations as follows:

For Bi ! 0 one obtains

Y ¼ 3Bi � s ð18Þ

while for Bi ! 1 one obtains the following asymptoti-
cally exact formula [15]:

Y ¼
ffiffiffiffiffiffiffi
18s

p
ð19Þ

Linear isotherm. In this case the Freundlich exponent
is m = 1. From Eqs. (10) and (11) the values b = 0.684
and c = 1.143 can be obtained. Upon substitution to
Eq. (13) one obtains:

Y ¼ 3

Bi
� 0:557

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pBi2s

p
� 1

� �
¼ 3

Bi
� f1 Bi

ffiffiffi
s

p� 	
ð20Þ

For small values of the dimensionless time the parti-
cle can be treated as a semi-infinite medium and the fol-
lowing asymptotically exact equation for the fractional
uptake can be obtained [16]:

Y ¼ 3

Bi
expðBi2sÞ � erfc Bi

ffiffiffi
s

p� 	
� 1þ 2ffiffiffi

p
p Bi

ffiffiffi
s

p� �

¼ 3

Bi
� f2 Bi

ffiffiffi
s

p� 	
ð21Þ
Fig. 2. Comparison of the functions f1 and f2.
A comparison of the function f1 and f2 is shown in
Fig. 2. It is evident that for Bi

ffiffiffi
s

p
< 10 these two func-

tions are almost identical. Futhermore, for the particular
case of Bi !1, Eq. (12) is approximately reduced to
the well known asymptotically exact form [15]:

Y ¼ 6ffiffiffi
p

p
ffiffiffi
s

p
ð22Þ
3. Development of the model of nonisothermal

adsorption

The following assumptions are made in this analysis:

• There are no temperature gradients inside the particle
and the heat transfer resistance is contributed by the
film surrounding the particle.

• The adsorption equilibrium is described by a Freund-
lich isotherm and the temperature changes have
negligible effect on the equilibrium.

• Mass transfer inside the particle is attributed to pore
diffusion.

• The diffusion coefficient, heat capacity and heat
of sorption are independent of temperature and
concentration.

• Chilton–Colburn analogy is applicable.

Based on these assumptions the heat balance of the
particle is described by the equation:

4

3
pR3

pqpDH
d�qm
dt

¼ 4pR2
phðT � T bÞ þ

4

3
pR3

pqpcp
dT
dt

ð23Þ

From Chilton–Colburn analogy we have jH = jD and
therefore taking into account the definitions of the heat
and mass factors one obtains:

h
uqgcg

Pr2=3 ¼ kg
u
Sc2=3 ð24Þ

and therefore

h
kg

¼ qgcgw ð25Þ

where

w ¼ Sc
Pr

� �2=3

ð26Þ

Defining the dimensionless particle temperature as

h ¼ T � T 0

T 0

ð27Þ

the heat balance can be rewritten in dimensionless form
as

f
dY
ds

¼ 3Biwðh� hbÞ þ
1

r
dh
ds

ð28Þ
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where

f ¼ DH � Cb

qgcgT 0

¼ DT ad

T 0

ð29Þ

r ¼
qgcg
qpcp

k ð30Þ

hb ¼
T b � T 0

T 0

ð31Þ

and DTad (=DH Æ Cb/(qgcg)) is the adiabatic temperature
increase.

Combining Eqs. (5), (13), (28) one obtains:

3Bi � f
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ds

p ¼ 3Biwðh� hbÞ þ
1

r
dh
ds

ð32Þ

The analytical solution of the above differential equation
with the initial condition

s ¼ 0; h ¼ 0 ð33Þ
is developed in Appendix A and is given by the equation:

h ¼ hb þ

2f
ffiffiffi
g

p

cw � expðgÞ

Z ffiffiffiffiffiffiffiffiffiffiffi
gð1þdsÞ

p

ffiffi
g

p
expðz2Þdz� hb

expðgdsÞ ð34Þ

where

g ¼ 3rBiw
d

ð35Þ

The integral in Eq. (34) can be calculated by expand-
ing the integrand into series and subsequent integration
term by term:Z

expðx2Þdx ¼
X1
k¼0

x2kþ1

ð2k þ 1Þk! ð36Þ
Fig. 3. Temperature uptake curves for r = 5 and different
values of m and Bi.
4. The influence of the isotherm nonlinearity and film

mass-transfer coefficient on the temperature

uptake curves

For a given set of the parameters m, Bi, r, w, f and hb,
Eq. (34) defines a temperature uptake curve. The Fre-
undlich exponent m is a measure of the isotherm nonlin-
earity. For systems of practical importance the isotherm
is favourable and m takes values in the interval (0 < m < 1).
The limiting values correspond to the important theoret-
ical cases of irreversible and linear isotherm.

The mass-Biot number characterises the relation bet-
ween the external and internal mass-transfer resistances
and increases with increasing film mass-transfer coeffi-
cient or decreasing intraparticle diffusivity. It is impor-
tant to note that the heat Biot number is zero
(negligible intraparticle heat-transfer resistances). For
most systems of practical importance the mass-Biot
number is usually many orders of magnitude greater
than the heat Biot number.

Parameter r characterises the relation between the
mass and heat capacities of the two phases. In most
cases r� 1. In the case of linear systems, r is constant
while for nonlinear systems it is a function of the fluid
phase concentration.

Parameter f is proportional to the heat of adsorption.
In Figs. 3–7, the quotient of the dimensionless particle
temperature h and the parameter f was used as depen-
dent variable.

In Figs. 3–5 the temperature uptake curves in the
form h/f = f(s) for various values of the parameters m,
Bi and r are shown. The parameters hb and w were kept
constant (hb = 0 and w = 1). Figs. 3 and 4 show the
influence of the isotherm nonlinearity and Biot number
on the temperature uptake curves. With decreasing Fre-
undlich exponent m the heat effects are greater due to the
increasing mass-transfer rate. With increasing Biot num-
ber however, the heat effects are becoming smaller. This
is due to the fact that as a result of the Chilton and Col-
burn analogy, an increase in the film mass-transfer coef-
ficient leads to an increase of the film heat transfer
coefficient. Since the heat-transfer resistances are en-
tirely located in the film surrounding the particle, while
the mass-transfer resistances are located both in the film
and inside the particle, a decrease in the film resistances
has a greater effect on the overall heat-transfer rate
rather than on the overall mass-transfer rate. As a result,
with increasing mass-Biot number the time needed to
achieve the temperature maximum is decreasing (Figs.
3 and 4). It is interesting to note that with increasing
Biot numbers the influence of the isotherm nonlinearity
becomes smaller.

In Fig. 5 the effect of the parameter r on the temper-
ature uptake curves is illustrated. With increasing r, the
heat effects become greater. This is expected, since r is



Fig. 4. Temperature uptake curves for r = 50 and different
values of m and Bi.

Fig. 5. Temperature uptake curves for m = 0.5, Bi = 20 and
different values of r.

Fig. 6. Temperature uptake curves for m = 0.2, Bi = 10, r = 20,
w = 1 and different values of hb.

Fig. 7. Comparison of the temperature uptake curves obtained
from the new model (Eq. (34)—solid lines) and the exact models
(dashed lines) for linear and irreversible isotherms.
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proportional to the mass capacity and inversely propor-
tional to the heat capacity of the solid phase.

In Fig. 6, the influence of the fluid-phase initial tem-
perature (parameter hb/f) is illustrated. With decreasing
initial fluid-phase temperature, the maximum tempera-
ture and the time needed to achieve it decrease. A crite-
rium for the existence of a temperature maximum will be
discussed in Section 5.

A comparison of the temperature uptake curves
resulting from the approximate model and the solutions
for the linear and irreversible isotherms is shown in
Fig. 7.

In the case of an irreversible isotherm, the mass-
transfer rate is given by:



Fig. 8. The dependency of p on g for various values of h0b.
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dY
ds

¼ 3ð1� Y Þ1=3

1� ð1� Y Þ1=3 1� 1
Bi

� 	 ð37Þ

Therefore

Y ¼ 1� 1

1� 1
Bi

� 	3
*
1

2
þ cos

(
p
3

þ 1

3
� arccos 1� 1

Bi

� �2

2þ 4

Bi
� 12s

� �
� 1

" #)+3

ð38Þ

Taking into account the above relations and Eq. (28), an
ordinary differential equation is obtained which with the
condition (33) was integrated numerically.

For a linear isotherm the solution for the tempera-
ture uptake curve is given by [7]

h ¼ 1

wþ Bi
3r

�
"
expðBi2sÞ � erfc Bi

ffiffiffi
s

p� 	
� expð�3BirwsÞ

þ 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffi
Bi
3rw

s
expð�3BirwsÞ �

Z ffiffiffiffiffiffiffiffiffiffi
3Birws

p

0

expðz2Þdz
#

ð39Þ

We observe that at the limiting cases, the approximate
model agrees very well with the exact models.
5. Maximum particle temperature

All temperature uptake curves shown in the figures
have a maximum. In the initial stages of the process,
the rate of adsorption and therefore the rate of heat gen-
eration are high. On the other hand the heat transfer
rate is low resulting in an increase in particle�s tempera-
ture. When at a later stage of the process, the rates of
heat generation and heat transfer become equal, the par-
ticle temperature achieves a maximum. In the last stage
of the process the particle temperature decreases asymp-
totically to the bulk temperature.

The time sm needed to achieve the maximum temper-
ature can be calculated using the equationZ ffiffiffiffi

gp
p

ffiffi
g

p
expðz2Þdz ¼ 1

2
ffiffiffi
g

p
expðgpÞffiffiffi

p
p þ expðgÞ � cw

f
hb

� �
ð40Þ

where (see Appendix B)

p ¼ 1þ dsm ð41Þ

The above Eq. (41) can be formally written as

p ¼ f ðg; h0bÞ ð42Þ

where

h0b ¼
cw
f
hb ð43Þ

The function p ¼ f ðg; h0bÞ is shown in Fig. 8.
The maximum temperature can be calculated using
the equation (see Appendix B):

hm ¼ hb þ
f
cw

1ffiffiffi
p

p ð44Þ

The above equation results from Eq. (32) upon substitu-
tion dh/ds = 0.

The calculation of the maximum particle temperature
and the time sm for known values of the parameters m,
Bi, r, w, f and hb is based on the following algorithm:

• Calculate b and c using Eqs. (10) and (11).
• Calculate d using Eq. (14) and g using Eq. (35).
• Determine h0b from Eq. (43).
• From Fig. 8 find p.
• Calculate sm using Eq. (41).
• Calculate the dimensionless temperature increase
using Eq. (44).

• The maximum increase of the temperature is then
given by

Tm � T 0 ¼ T 0hm ð45Þ

The influence of parameter hb on the temperature up-
take curves has been discussed in the previous section
(Fig. 6). For a critical value of this parameter no temper-
ature maximum is observed. This situation arises when
the rate of heat generation at the beginning of the pro-
cess is smaller or equal to the rate of heat transfer. In
the critical case when the two rates are equal we have
(s = 0, Y ¼ 0, and dh/ds = 0). Therefore, from Eqs. (5)
and (28) we have

f
cw

¼ h� hb;crit ð46Þ
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At s = 0, the dimensionless temperature is zero (h = 0),
therefore

hb;crit ¼ � f
cw

ð47Þ

Eq. (47) can be also derived from Eq. (44) by substitut-
ing sm = 0 and hm = 0.

If the heat effects are negligible then f = 0 and
hb,crit = 0. In this case the temperature uptake curve
monotonically increases or decreases depending on the
value of hb.

The lower curve in Fig. 6 is an example of the critical
case where Eq. (47) is applicable. We observe that the
temperature uptake curve is monotonous.
Fig. 9. Freundlich equation equilibrium fitting to the experi-
mental data [9] for RH < 0.5.
6. Comparison with experiment

The presented model has been used to predict the
temperature uptake curves using the data presented by
Bowen and Rimmer [9] for the adsorption of water va-
pour on alumina at 30 �C and at a gas-phase velocity
of 0.36 m/s. The equilibrium data [9] were used to calcu-
late the parameters of the Freundlich isotherm:

qm ¼ KFpm ð48Þ

where p = RH Æ ps. The parameters KF and m are func-
tions of the temperature (Do [17]):

KF ¼ K0 exp �ART
E0

� �
ð49Þ

m ¼ RT
E0

ð50Þ

where A is a constant in the Clausius–Clapeyron
equation:

ln ps ¼ A� B
T

ð51Þ

In the temperature interval 30–42 �C, the constants of
Eq. (51) for water vapour are A = 25.654, B = 5242.2.
The so obtained values at T = 30 �C and RH < 0.5 were
KF = 0.002636, m = 0.5064. The resulting values for the
parameters K0 and E0 are K0 = 1152 and E0 = 4975 J/
mol. In Fig. 9, the experimental equilibrium data
and the Freundlich isotherm are presented. It is obvious
that the Freundlich isotherm describes well the
equilibrium.
Table 1
Model parameters

RH Cb (kg/m3) qmb (kg/kg) k DTad

0.096 0.00291 0.0552 21910 6.9
0.299 0.00906 0.0982 12505 21.5
0.514 0.01557 0.1292 9570 37.0
The necessary for the computations data are [7,9]:
Rp = 0.00109 m, qp = 1154 kg/m3, cp = 840 J/kg K, DH=
2,720,000 J/kg, kg = 0.071 m/s.

The data for the gas-phase (air) are qg = 1.13 kg/m3,
cg = 1013 J/kg K. The diffusion coefficient of water va-
pour in air at 0 �C is 22.0 · 10�6 m2/s [18]. Therefore
at 30 �C we have D = 22.0 · 10�6 (303/273)1.7 = 26 ·
10�6 m2/s.

Three experimental series were used each for a differ-
ent relative humidity. The parameters for each one are
shown in Table 1. In all cases hb = 0. Two values of
the effective pore diffusivity were used. The one resulting
from the approximate expression Dp1 = D/10 = 2.6 ·
10�6 m2/s. The other one Dp2 = 3.6 · 10�6 m2/s was
taken from [9]. The resulting Biot numbers are 30.0
and 21.5.

In the case of the system air–water vapour, the Pra-
ndtl and Schmidt numbers are approximately equal
and therefore (Eq. (26)) w = 1. In Fig. 10 a comparison
of the experimental results and the model predictions are
shown. In the case of RH = 0.096, the model predictions
agree very well with the experimental results. For
RH = 0.299 the agreement is reasonable although an
underestimation of the maximum temperature is ob-
served. For RH = 0.514, the differences are too large
and the model seems to be inadequate. This should be
attributed to various factors such as:
(K) r (oqm/oT)p a0 b0

25.9 �0.00080 2310 2.59
14.8 �0.00142 1319 4.60
11.3 �0.00187 1009 6.05



Fig. 10. Comparison of experimental results [9] (points) and the
predictions of the approximate model (lines). Fig. 11. Comparison of the new model (Eq. (34)—solid line)

with the model [6] (dashed line) and the experimental results for
Dp = 2.6 · 10�6 m2/s.

Fig. 12. Comparison of the new model (Eq. (34)—solid line)
with the model [7] (dashed line) and the experimental results for
RH = 0.299 and Dp = 2.6 · 10�6 m2/s.

K. Kupiec, A. Georgiou / International Journal of Heat and Mass Transfer 48 (2005) 5047–5057 5055
(a) The isotherm (Eq. (48)) is based on data for
RH < 0.5.

(b) The temperature increases and their influence on
the equilibrium are significant. This is in agree-
ment with the findings of Hills [7] who states that
for temperature increases exceeding 10 K the
assumption of negligible influence of the heat
effects on the equilibrium is no longer applicable.
As will be shown later however, an iterational
computation scheme improves substantially the
accuracy of the model.

In Fig. 11 a comparison of the predictions of the new
model (Eq. (34)) with the model (Eqs. (1)–(4)) by Ruth-
ven et al. [6] is presented. The calculation of the para-
meter b 0 requires the value of the derivative (oqm/oT)p.
From Eqs. (48)–(51) it can be readily shown that

oqm
oT

� �
p

¼ � RB
E0 T

� qm ð52Þ

The average value of the derivative was found for
qm = qmb/2 and is given in Table 1 with the values of
the parameters a 0 and b 0.

It is obvious from Fig. 11 that Ruthven�s et al. [6]
model significantly deviates from the experimental data
at the initial stage of the process. This is a consequence
of the assumption that the external mass-transfer resis-
tances are negligible. At the initial stages of the process
however the intra-particle mass-transfer rate is large and
the external mass-transfer resistances are rate control-
ling. Furthermore, the predicted by the model (Eqs.
(1)–(4)) maximum temperature rise is significantly over-
estimated. On the other hand, the predictions of the new
model (Eq. (34)) agree well with the experimental data.
This shows that the assumption that the isotherm
parameters are temperature independent leads to smaller
errors than the assumption of negligible external mass-
transfer resistances. This is in agreement with the find-
ings by Hills [7].

In Fig. 12 a comparison of the predictions of two
models (Hills [7] and Eq. (34)) is shown. The model
presented by Hills [7] is based on a linear isotherm
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assumption. The values of the parameters DTm and tm
were calculated as follows:

• From Eqs. (10) and (11) the parameters b and c were
calculated b = 0.522, c = 1.077.

• From Eqs. (14) and (35) the parameters d and g were
calculated:

d ¼ 6 � 0:522 � ð30Þ2=ð1:077Þ2 ¼ 2430

g ¼ 3 � 15:1 � 30 � 1=2430 ¼ 0:559

• Using the values of g and for h0b ¼ 0, the parameter p
was found from Fig. 8; p ffi 4.0.

• The parameter sm was found from Eq. (41):
sm = 0.00123. Therefore (Eq. (7)):

tm ¼ 12; 790 � ð0:00109Þ2 � 0:00123=ð2:6� 10�6Þ
¼ 7:2 s

• The parameter f was calculated:

f ¼ 21:5=303 ¼ 0:0709

• The maximum dimensionless temperature was found:

hm ¼ 0þ 0:0709= 1:077 � 1 �
ffiffiffiffiffiffiffi
4:0

p� �
¼ 0:0329

• The temperature increase was found:

DTm ¼ 0:0329 � 303 ¼ 10:0 K

• The critical bulk temperature for the existence of a
maximum in the temperature uptake curve was
found:
Fig. 13. Iterative computation of the temperature uptake curve.
RH = 0.514, Dp = 2.6 · 10�6 m2/s. Line 1: parameters calcu-
lated for initial temperature. Line 2: parameters calculated for
average temperature.
hb;crit ¼ �0:0709=ð1:077 � 1Þ ¼ �0:0658

T crit � T 0 ¼ �0:0658 � 303 ¼ �19:9 K

Therefore for bulk temperatures below 30 � 19.9 =
10.1 �C no maximum exists.

In the presented analysis, the calculation of the tem-
perature uptake curve based on Eq. (34) was made using
the values of the isotherm parameters for the initial tem-
perature T0. The accuracy of the model improves if the
parameters are determined at the average temperature
T0 + 0.5 Æ DTm. In Fig. 13 a comparison of the predic-
tions of the model (Eq. (34)) using the values of the
parameters for the initial temperature T0 = 30 �C and
the average temperature T0 + 0.5 Æ DTm = 30 + 0.5 Æ
15.8 = 37.9 �C is presented. We observe that the applica-
tion of the corrected values of the parameters improves
the accuracy of the model and the predicted temperature
uptake curve is in better agreement with the experimen-
tal data. It is therefore recommended that the model
(Eq. (34)) is applied initially using the values of the
parameters for T = T0 to calculate DTm and subse-
quently is applied using the values of the parameters
for T = T0 + 0.5 Æ DTm.
7. Conclusions

The presented results lead to the following
conclusions:

1. The application of the kinetic equation (5) leads to a
new model of nonisothermal adsorption which is
analytically integrable. The new model is applicable
to systems with a nonlinear isotherm and accounts
for both intraparticle (pore diffusion) and film
mass-transfer resistances as well as film heat transfer
resistances. This new model is the only currently
available model, which is analytically integrable for
a nonlinear isotherm.

2. The new model has been applied to describe the influ-
ence of the isotherm nonlinearity and the Biot num-
ber on the temperature uptake curves. It is shown
that the heat effects are increasing with increasing
isotherm nonlinearity.

3. The predictions of the new model agree well with the
experimental results presented in [9] and with the pre-
dictions of the exact models for linear and irreversible
isotherms.

4. A simple algorithm presented in this work allows the
calculation of the maximum temperature and can be
usefull in the assessment whether a process may be
assumed isothermal.

5. The new model leads to a simple criterium for the
existence of a maximum in the temperature uptake
curve.
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Appendix A. Analytical integration of Eq. (32)

Eq. (32) is transformed to give:

expð3rBiwsÞ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ds

p ¼ 1

3rBi
d

ds
½ðh� hbÞ expð3rBiwsÞ� ðA:1Þ

Both sides of Eq. (A.1) are integrated with respect to
time taking into account the initial condition Eq. (33):

3rBi
c

I ¼ ðh� hbÞ expð3rBiwsÞ þ hb ðA:2Þ

where

I ¼
Z s

0

expð3rBiwsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ds

p ds ðA:3Þ

The integral is calculated:

I ¼
2

ffiffiffi
g

p

gd � expðgÞ

Z ffiffiffiffiffiffiffiffiffiffiffi
gð1þdsÞ

p

ffiffi
g

p
expðz2Þdz ðA:4Þ
Appendix B. Determination of the maximum of the

temperature uptake curve

Eq. (34) was differentiated with respect to time and
set equal to zero. Taking into account that:

d

ds

Z ffiffiffiffiffiffiffiffiffiffiffi
gð1þdsÞ

p

ffiffi
g

p
expðz2Þdz

¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1þ dsÞ

p
 �
ds

� d

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1þ dsÞ

p
 � Z
ffiffiffiffiffiffiffiffiffiffiffi
gð1þdsÞ

p

ffiffi
g

p
expðz2Þdz

¼ gd

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1þ dsÞ

p � exp½gð1þ dsÞ� ðB:1Þ

we obtainZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1þdsmÞ

p

ffiffi
g

p
expðz2Þdz

¼ 1

2
ffiffiffi
g

p
exp½gð1þ dsmÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dsm
p þ expðgÞ � cw

f
hb

� 
ðB:2Þ

Upon substitution of Eq. (B.2) to Eq. (34) we obtain

hm ¼ hb þ
f
cw

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dsm

p ðB:3Þ
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